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Fat-tailed distributions have been reported in fluctuations of fi-
nancial markets for more than a decade. Sliding interval techniques
used in these studies implicitly assume that the underlying sto-
chastic process has stationary increments. Through an analysis of
intraday increments, we explicitly show that this assumption is
invalid for the Euro–Dollar exchange rate. We find several time
intervals during the day where the standard deviation of incre-
ments exhibits power law behavior in time. Stochastic dynamics
during these intervals is shown to be given by diffusion processes
with a diffusion coefficient that depends on time and the exchange
rate. We introduce methods to evaluate the dynamical scaling
index and the scaling function empirically. In general, the scaling
index is significantly smaller than previously reported values close
to 0.5. We show how the latter as well as apparent fat-tailed
distributions can occur only as artifacts of the sliding interval
analysis.

fat tails � Fokker–Planck equation � Langevin simulations

Arguably the most important problem in quantitative finance
is to understand the nature of stochastic processes that

underlie market dynamics. One aspect of the solution to this
problem involves determining characteristics of the distribution
of fluctuations in returns. Empirical studies conducted over the
last decade have reported that they are non-Gaussian, scale in
time, and have power law (or fat) tails (1–6). However, by
combining increments at multiple times in their statistical anal-
yses (sliding interval techniques), these studies implicitly assume
that the stochastic process has stationary increments. For finan-
cial markets, it is not clear whether this assumption is valid. For
example, it is possible that trading activity at the beginning of a
trading day may differ from that at the end of the day. How is
it possible to test whether intraday fluctuations are time-
independent? If they are time-dependent, how can statistical
analyses be conducted? Will results from previous studies be
invalidated?

Our analysis is conducted on intraday Euro–Dollar exchange
rates (traded 24 h per day) during 1999–2004 recorded in 1-min
intervals. It is based on the assumption that intraday variations
in the market follow the same underlying stochastic process
every day. Then, a statistical analysis for fluctuations at a given
time of the day can be conducted by using data from multiple
trading days within the sample.

We find from this analysis the following. (i) The stochastic
process is time-dependent and there are several intervals during
the day where the standard deviation of increments exhibits
power law behavior. Stochastic dynamics during these intervals
is given by variable diffusion processes (2). (ii) Dynamical scaling
indices and empirical scaling functions within these scaling
intervals are different from previously reported results. We show
how the latter can result from the application of sliding interval
methods to a time-dependent stochastic process. (iii) Autocorrela-
tion functions for variable diffusion processes exhibit anomalous
characteristics similar to those reported in financial markets.

Results and Discussion
As in most studies of dynamics of financial markets, we assume
that the return log P(t), where P(t) represents the Euro–Dollar

rate at time t, executes stochastic dynamics. Since there are
autocorrelations in P(t) for time differences smaller than 10 min,
we analyze the underlying stochastic process using increments
��(t) � [log P(t � 10) � log P(t)] of the return. The analysis
presented below is predicated on the assumption, for which we
provide evidence, that the stochastic dynamics of ��(t) is the
same between trading days. Then, we find that the average
movement ���(t)� taken over the �1,500 trading days during
1999–2004 nearly vanishes for each value of t. For the rest of our
analysis, we remove this mean and study �(t) � ��(t) � ���(t)�.

We first show that increments in return are time-dependent.
Fig. 1a shows the behavior of the standard deviation �(t) �
	��(t)2� of the Euro–Dollar rate as a function of the time of day.
If the stochastic process were time-independent, the curve would
be flat. Instead, �(t) exhibits complicated behavior and changes
by more than a factor of 3 during the day. Hence, increments in
the Euro–Dollar rate during a day are nonstationary. It has been
proposed that this time dependence can be partially removed by
using ‘‘tick-time’’ instead of clock-time (7).

To validate the assumption of daily repetition of the stochastic
process, we implement a corresponding analysis of f luctuations
throughout a trading week (8). Fig. 1b shows the standard
deviation of returns averaged over the 300 weeks studied. The
approximate daily periodicity of �(t) is evident, thereby justify-
ing our approach. Similar observations were made on price
increments for Euro–Dollar rate in ref. 8.

�(t) scales as power laws in time during several intervals within
the day. Power-law fits to the data in some of these intervals are
shown by colored lines in Fig. 1a. We focus our analysis on the
time interval I, which begins at 9:00 a.m. New York time and lasts
�3 h. The data shown in red in Fig. 2a show that within this
interval, �(t) scales like t��, where t is measured from the
beginning of I and the index � � 0.13 
 0.04. This scaling extends
for more than 1.5 decades in time. Note that the value of � is
different for the other scaling intervals. Similar variation in
scaling exponents during the day has been reported previously (9).

The scaling index within I does not change significantly during
the 6 years studied. This is demonstrated by independently
analyzing three periods 1999–2000, 2001–2002, and 2003–2004.
Fig. 2b shows that the scaling index remains nearly unchanged
between these 2-year periods.

We have also analyzed the behavior of other moments
���(t)���1/� of fluctuations of returns. Fig. 2a shows that each of
the moments � � 0.5, 1.0, 2.0, and 3.0 also scales as a power law
in time, and furthermore that the scaling index for each of them
is consistent with the value of � � 0.15. This nearly uniform
scaling of moments suggests that the return distribution itself
scales in time. To provide a scaling ansatz, consider the stochastic
variable
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x��; t� � �
k�0

N�1

��t � 10k�,

which is the total increment of the return in a time interval � �
10N stating from t. Denote its distribution by W(x, �; t), where
the final argument reiterates that the distribution can depend on
the starting time of the interval. Our scaling ansatz is

W�x, �; 0� �
1

�H F�u�, [1]

where H is the scaling index, u � x/�H is the scaling variable, and
F is the scaling function. Note that it is for a time interval starting
from the beginning of I.

In addition to scaling, stochastic dynamics of the Euro–Dollar
rate appears to have no memory. This can be demonstrated by
evaluating the autocorrelation function

A�t1, t2� �
���t1���t2��

��t1���t2�
.

We find that A(t1, t2) � 1 if t1 � t2, and of the order of 10�3 when
�t1 � t2� � 10. This observation eliminates fractional Brownian
motion (10) as a description for the underlying stochastic
dynamics and strongly indicates that �(t) is a Markov process.
Consequently, x(�; 0) follows a Markov process in � and 	W(x, �;
0)/	� depends only on x(�; 0) and �. If, in addition, W(x, �; 0) has
finite variance (see Fig. 4), it has been analytically established
that the evolution of W(x,�; 0) is given by a diffusion equation
(11, 12)

	

	�
W�x, �; 0� �

1
2

	2

	x2 D�x, ��W�x, �; 0��, [2]

where D(x, �) is the diffusion coefficient. There is no drift term
in Eq. 2 because x(�; 0) has zero mean. Note that the stochastic
dynamics is completely determined by the diffusion coefficient,
which, as shown below, depends on H. Hence, H can be
considered to be the dynamical scaling index.

Because we have found scaling, consider solutions to Eq. 2 of
the form given by Eq. 1. When H � 1⁄2, the diffusion coefficient
has been shown to be a function of u; i.e., D(x, �) � D(u) (12).
If, in addition, D(u) is symmetric in u, it is related to the scaling
function by F(u) � D(u)�1 exp (��u dy y/D(y)) (12, 13). When
H � 1⁄2, we can ‘‘rescale’’ time intervals by �̃ � �2H (8, 14). In �̃,
the stochastic process has a scaling index 1⁄2 and a diffusion
coefficient of the form D(x/	�̃). Converting back to �, D(x, �) �
2H�2H�1 D(u) (14).

Statistical analyses of financial markets have often been
conducted by using sliding interval methods (2–6, 8, 15, 16),
which implicitly assume that the underlying stochastic process
has stationary increments. For example, they compute the
distribution WS(x, �) � �W(x, �; t)�t, where �.�t indicates an average
over t. Many of these studies have reported that WS(x, �) scales as

WS�x, �� �
1

�HS FS�v�, [3]
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Fig. 1. Intraday increments in the Euro–Dollar exchange are nonstationary.
(a) Standard deviation �(t) � 	��(t)2� of the increments of the daily Euro–
Dollar exchange as a function of the time of day (in Greenwich Mean Time).
Our statistical analysis assumes that �(t) follows the same stochastic process
each trading day. The average indicated by the brackets �.� is taken over the
�1,500 trading days between 1999 and 2004, and the standard error at each
point is typically 3%. Note that, if the stochastic dynamics had stationary
increments, �(t) would be constant. Instead, it varies by more than a factor of
3 during the day, thus showing explicitly that the exchange rate has nonsta-
tionary increments. Notice also that �(t) scales in time during several intervals,
four of which are highlighted by colored lines that are power-law fits. Our
analysis focuses on the interval I shown by the horizontal solid line. (b) Weekly
behavior of �(t) for the same data. Observe that it exhibits an approximate
daily periodicity, thereby justifying our assumption of the daily repeatability
of the stochastic process underlying the Euro–Dollar exchange rate.
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Fig. 2. Moments of increments scale in time. (a) log–log plot of ���(t)���1/� for � � 0.5, 1.0, 2.0, and 3.0, demonstrating power-law decay t�� for each index. Here,
t is measured in local New York time stating at 9:00 a.m. The data for � � 0.5, 1.0, 2.0, and 3.0, shown in blue, green, red, and black, respectively, have scaling
indices (given by the slopes of the solid lines) � � 0.15 
 0.02, 0.14 
 0.02, 0.13 
 0.04, and 0.13 
 0.08. All of these values are consistent with � � 0.15, and hence
a dynamical scaling index of H � 1⁄2 � � � 0.35. The error estimates on the exponents are the standard errors from the nonlinear fit including the standard
deviations for each time point but neglecting any correlations between them. (b) Behavior of the standard deviation �(t) in the interval I during each of the
periods 1999–2000 (blue), 2001–2002 (red), and 2003–2004 (green). The scaling index from nonlinear fits for the three data sets are 0.13 
 0.06, 0.14 
 0.04, and
0.14 
 0.07. The near equality of these indices shows that the scaling index is nearly invariant over time.
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where v � x/�HS and HS � 1⁄2. It has also been reported that the
scaling function FS has power-law (or fat) tails (5, 6). However,
it is important to understand that WS(x, �) is a solution of Eq. 2
only when the stochastic process is not time-dependent, in which
case H � HS � 1⁄2. In general, HS and WS(x, �) are different from
H and W(x, �; 0). Next, we give an explicit example where this is
the case, and, in addition, WS(x, �) appears to have fat tails even
though W(x, �; 0) does not.

Consider a diffusive process initiated at x � 0 that has a
variable diffusion coefficient 2H�2H�1(1 � �u�). Its distribution
has a scaling index H and a scaling function F(u) � 1⁄2 exp (��u�)
(12, 13). (See the discussion after Eq. 2.) Numerical integration
of the stochastic process for H � 0.35 confirms this claim (see
Fig. 3a). In contrast, WS(x, �) calculated from the same data
appears to scale with an index HS � 1⁄2. Unlike F, which is
biexponential, the apparent scaling function FS (shown in Fig.
3b) has broad tails. However, a careful analysis reveals that
distributions WS(x, �) do not scale in the tail region, and hence
that FS is not well defined. Differences analogous to those
between H and HS have been noted for Lévy processes (17) and
for the R/S analysis of Tsallis distributions (15).

The behavior of �(t) (Fig. 2a) can be calculated for variable
diffusion processes. Assuming that � is small, Ito calculus gives

x2 � x(�; t)2 � D(x, t)� � O(�2). Averaging over returns at t gives

�
x2� � ��dxW�x, t; 0�D�x, t���. [4]

In a variable diffusion process, W(x, t; 0) � t�HF(u) and D(x; t) �
2 Ht2H�1D(u); consequently

��
x2� 	 tH�1/2, [5]

independent of the exact form of D(u). Results for the Euro–
Dollar rate within the interval I (Fig. 2a) that showed that � �
0.15 are therefore consistent with a scaling index H � 1⁄2 � � �
0.35. Note that, unlike for Lévy processes and fractional Brown-
ian motion, H � 1⁄2 and is significantly lower than HS reported
in previous analyses of the Euro–Dollar exchange rate (between
0.5 and 0.6) (8, 16, 18). A general calculation for the moments
of a variable diffusion process gives

��
x���1�� 	 t H�1�2, [6]

for all �, consistent with results shown in Fig. 2a.
To estimate HS for an arbitrary variable diffusion process, we

take the time average of the ensemble average of Eq. 4, giving

��x��; t�2��t � 
�dxW�x, t; 0�D�x, t��
t

�. [7]

Higher-order corrections to this approximation are small when
� �� t, a condition that is true for most intervals of length � in
a sliding interval calculation. Hence, ��x(�; t)2��t � �. Conse-
quently, HS � 1⁄2 regardless of the value of H.

Finally, we introduce a method to extract the empirical scaling
function F from the Euro–Dollar time series. Unfortunately, the
available data are insufficient to determine F(u) accurately using
the usual method of collapsing W(x, �; 0) for each value of �.
However, since we have determined H (�0.35) independently,
we can use Eq. 1 for multiple values of � in the interval I (i.e.,
� between �10 and 160 min) to determine F. The result is shown
in Fig. 4a. Note that the distribution has an approximate
biexponential form. Since exponential distributions have finite
variance, all assumptions needed for the derivation of Eq. 2 are
justified. However, it is asymmetric and decays more slowly on
the negative side. By contrast, the empirical sliding interval
scaling function FS(v) for the same time interval is shown in Fig.
4b. For this case, the scaling collapse is achieved for HS � 1⁄2.
FS(v) has broader tails, consistent with previous reports (6, 18).
However, in light of the example discussed earlier and the fact
that H � 1⁄2, it is unlikely that FS is well defined for this financial
market data within the interval I.

Variable diffusion processes exhibit another signature (styl-
ized fact) of market fluctuations. Since they have no drift, the
autocorrelation functions of these increments vanish. However,
a small fraction of these random walks reach anomalously high
values of �x� and hence experience large diffusion rates. Conse-
quently, they execute large movements (whose directions are
uncorrelated) repeatedly. As a result, the autocorrelation func-
tion for the signal ��(t)� [or for the signal �(t)2] will decay slowly
in t. Such behavior, referred to as ‘‘clustering of volatility’’ is seen
in the Euro–Dollar exchange rate and has been reported in
empirical studies of other financial markets (19–21).

Conclusions
We have shown that the stochastic process underlying intraday
fluctuations in the Euro–Dollar exchange rate is time-dependent
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Fig. 3. Model data analysis demonstrating the appearance of spurious fat tails by means of a sliding interval technique. (a) Scaling function of the return
distribution F calculated from a collapse of data for � � 10 (blue), 100 (green), and 1,000 (red) units. The results are from a set of 5,000,000 independent stochastic
processes with variable diffusion. The scaling index used was H � 0.35, and the diffusion coefficient was 2Ht2H�1(1 � �u�). Note that F is biexponential, as discussed
in the text. (b) Sliding interval scaling function FS calculated from the same runs. Shown are results for sliding intervals with � � 10 (blue), 100 (green), and 1,000
(red) units from runs of length 10,000 units. Unlike F, it appears to have fat tails. The scaling index used here for which the scaling collapse is achieved is HS �
1⁄2 even though the dynamical scaling index is H � 0.35. Note, however, that although the central part of the distribution scales well, the tails do not.
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and that there are several intervals during which the standard
deviation of increments exhibits scaling. The stochastic dynamics
within these scaling intervals was shown to be diffusive with a
diffusion coefficient that depends on both time and the exchange
rate (2, 12). We presented a detailed analysis of one of the scaling
regions that begins at 9:00 a.m. New York time and last for �3
h. The dynamical scaling index for the variable diffusion process
here was shown to be �0.35, significantly lower than the sliding
interval value HS � 0.5 reported in previous analyses of financial
markets. In addition, unlike previous reports of fat-tailed dis-
tributions, the empirical scaling function within the interval has
exponential tails. We showed that these discrepancies can result
from the inappropriate use of sliding interval techniques to study
stochastic processes with nonstationary increments.

The analysis given here applies to stochastic dynamics of a
single scaling interval. However, daily f luctuations in the Euro–
Dollar rate are a combination of scaling intervals with distinct
indices, and possibly regions with no scaling. We have not yet
determined how to extend our analysis beyond a single scaling
region. Because of this, it is not clear how to interpret the
distributions over intervals longer than a scaling region, includ-
ing inter-day data.

Materials and Methods
We analyzed 1-min-interval tick data of the Euro–Dollar ex-
change rate in the 6-year period 1999–2004. The data were
obtained from Olsen Financial Technologies, Zürich, Switzer-
land, and consisted of the closing bid and ask values for each
minute interval, 24 h per day. The price used in our computations
was the mean of the bid and ask values; instances where one

or both of them were not available were discarded from
consideration.

Our analysis was limited to days in the 6-year period that the
New York markets were open. Specifically, Euro–Dollar rates
for national holidays in the United States; September 11–14,
2001, after attacks on the World Trade Center; and the day of
observance of President Reagan’s funeral, June 11, 2004, were
not used in the computations.

The 24-h results of Fig. 1 are plotted as a function of
Greenwich Mean Time (GMT). In conducting the analysis for
the interval I, we note that the it lies within the period when
banks and the stock exchange in New York are open. Although
we do not have the data on trading volume to corroborate it, we
assume that currency trading during this period is dominated by
trading activity in New York. Consequently, in generating Fig. 2,
we shifted time to account for the conversions between Eastern
Standard Time (EST) and Eastern Daylight Time (EDT). The
origin of time in Fig. 2 is set to 9:00 a.m. New York time. The data
used in Fig. 4 are the same as those used in Fig. 2. The simulated
data shown in Fig. 3 was generated by Langevin integration
assuming Ito stochastic noise. That is, dx � 	D(x, t)dB, where
dB is a normally distributed random variable over the time
interval dt. The value of the diffusion coefficient D(x, t) at the
beginning of the time interval was used during the entire time
interval (Ito calculus). For the results shown in the figure,
dt � 10�4.
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Fig. 4. Foreign exchange data analysis demonstrating the appearance of spurious fat tails by means of a sliding interval technique. (a) Empirical scaling function
F for interval I calculated assuming the scaling ansatz Eq. 1 with H � 0.35 and values of � between 10 and 160 min. Note that F is slightly asymmetric and
approximately biexponential. Since exponential distributions have finite variance, all assumptions needed for the derivation of Eq. 2 are justified. (b) Empirical
sliding interval scaling function FS for interval I calculated by scaling collapse of data using the ansatz Eq. 3 for � of 10 (blue), 20 (green), and 40 (red) min. Note
that the tails of FS are broader.
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